skip to main content


Search for: All records

Creators/Authors contains: "Atkinson, Angus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Abstract In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic. 
    more » « less
  4. Abstract. Plankton form the base of the marine food web and are sensitive indicatorsof environmental change. Plankton time series are therefore an essentialpart of monitoring progress towards global biodiversity goals, such as theConvention on Biological Diversity Aichi Targets, and for informingecosystem-based policy, such as the EU Marine Strategy Framework Directive.Multiple plankton monitoring programmes exist in Europe, but differences insampling and analysis methods prevent the integration of their data,constraining their utility over large spatio-temporal scales. The PlanktonLifeform Extraction Tool brings together disparate European planktondatasets into a central database from which it extracts abundancetime series of plankton functional groups, called “lifeforms”, according toshared biological traits. This tool has been designed to make complexplankton datasets accessible and meaningful for policy, public interest, andscientific discovery. It allows examination of large-scale shifts inlifeform abundance or distribution (for example, holoplankton beingpartially replaced by meroplankton), providing clues to how the marineenvironment is changing. The lifeform method enables datasets with differentplankton sampling and taxonomic analysis methodologies to be used togetherto provide insights into the response to multiple stressors and robustpolicy evidence for decision making. Lifeform time series generated with thePlankton Lifeform Extraction Tool currently inform plankton and food webindicators for the UK's Marine Strategy, the EU's Marine Strategy FrameworkDirective, and for the Convention for the Protection of the MarineEnvironment of the North-East Atlantic (OSPAR) biodiversity assessments.The Plankton Lifeform Extraction Tool currently integrates 155 000 samples,containing over 44 million plankton records, from nine different planktondatasets within UK and European seas, collected between 1924 and 2017.Additional datasets can be added, and time series can be updated. The PlanktonLifeform Extraction Tool is hosted by The Archive for Marine Species andHabitats Data (DASSH) at https://www.dassh.ac.uk/lifeforms/ (last access: 22 November 2021, Ostle et al., 2021). The lifeform outputs are linked to specific, DOI-ed, versions of thePlankton Lifeform Traits Master List and each underlying dataset. 
    more » « less
  5. Abstract

    Poleward range shifts are a global‐scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill,Euphausia superbaand, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70‐year period of rapid warming (1920s–1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5–1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south‐west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate‐ready marine protected areas should include these key areas of future habitat.

     
    more » « less